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ABSTRACT

Comparing the different sonnd source localization techniques, pro-
posed in the literature during the last decade, represents a relevant
topic in order to establish advantages and disadvantages of a given
approach in a real-time implementation. Traditionally, algorithms
for sound source localization rely on an estimation of Time Differ-
ence of Arrival (TDOA) at microphone pairs through GCC-PHAT.
When several microphone pairs are available the source position can
be estimated as the point in space that best fits the set of TDOA
measurements by applying Global Coherence Field (GCTF), also

known as SRP-PHAT, or Oriented Global Coherence Field (OGCF).

A first interesting analysis compares the performance of GCF and

OGCF to a subeptimal LS search method. In a second step, Adap-

tive Eigenvalue Decomposition is implemented as an altemative to
GCC-PHAT in TDOA -estimation, Comparative expetiments are
condueted on signals acquired by g linear array during WOZ ex-
periments in an interactive-TV scenario. Changes in performance
according to different SNE. levels are reported.

Index Terms— Source localization, ;nicrdphone arrays, adap-
tive eigenvalue decomposition, generalized cross correlation.

1. INTRODUCTION

During last years, the problem of locating a sound source in space
has received a growing interest from the scientific community. Many
audio proczssinig applications can obtain- substantial benefits from
the knowledge of the spatial position of the source which is emitting
the signal under process. For this reason many efforts have been
devoted to investigating this research area and several altemative
appreaches have been proposed over the years [1]. Traditionally, al-
gorithms for souid sourse localization rely on an estimation of Time
Difference of Arrival {TDOA) at microphone pairs from which one
can derive information about the spatial position of an emitting
sontee. [ this paper we present an experimental comparison, con-
ducted vn real data collections, of two TDGA estimation imethods,
namely Generalized Cross-Correlation PHAse Transform (GCC-
PHAT) and Adaptive Eigenvalue Decomposition {AED), when com-
bined to source localization based on acoustic maps. Experiments
are conducted on excetpts of a WOZ data collection acquired in a
domestic-like environment during the JICIT project whose focus

. This work was partially supported by the EC under the STREP Proje'ct
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is a user-friendly interface that altows interaction with TV and in-
fotainment services'. - The acoustic setup adopted in the recordings
consists of a compact microphone array of 15 microphones deployed
in front of the speakers. - Ground truth positions for each user were
available based on an automatic video tracking [2].

In ‘this paper we first recall GCC-PHAT and AED theories and
properties. Then, a description of three different acoustic map com-
putations is presented in Section 3. Section 4 reports the results of
our comparative analysis while conclesions and future work close
this paper in Section 5.

2. COHERENCE MEASURES

Given the signals acquired by a couple of microphones, a coherence
measure can be defined as a function that indicates the similarity
degree between the two signals realigned according to a given time
lag. Coherence measures can hence be used to estimate the time
delay between two signals. For example, Cross-Comrelation is the
most straightforward coherence measure.

The most common approach adopted in the sound source lo-
calization community to compute a coherence measure is the use
of GCC-PHAT {3]. Let us consider twe digital signals x1{») and
z2(n) acquired by a couple of microphones, GCC-PHAT is defined
as follows: '

X, X3

where 4 is a time lag, subject to |d] < Tmox. while X7 and X; are
the DFT transforms of = and x2 respectively. The inter-microphone
distance deterntines the maximum valid time delay 7q.. Ithas been
shown that, in ideal conditions, GCC-PHAT presents a prominent
peak in comespondence of the actnal TDOA. On the other hand,
reverberation introduces spurious peeks which may lead to wrong
TDOA estimates [4].

An altemative way to obtain a coherence measure is oftered by
AED {5, 6] that is able to provide a rough estimation of the im-
pulse respenses that describe the wave propagation from one acous-
tic seurce o two microphones. {Under the assumption that the main
peal of each impuise response identifies the direct path between the
source and the microphone, the TDOA can be estimated as the time
difference between the two main peaks. Let us denote with k) and

¥ Further details can be found in hitp: / /dicit.fok.eu
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ha the two impulse responses, in ideal conditions, i.e. without noise,
the following cquation holds:

R = x1(n) = ha  hy * s{n) = h1 * 22(n) )

where s(n) is the signal emitted by the source. If we consider the
veetors u = [hy, —hs] and x = [21,x2), it can be shown that u
corresponds to the eigenvector associated to the null eigenvalue of
the covariance matrix R. = E {x -x" }:

Rou=20 (3)

11 noisy conditions, equation 3 does not hold strictly any longer but
u, and hence the two impulse responses, can be still computed as
the eigenvector corresponding to the smallest eigenvalue. The esti-
mated sigenvector &t = [ﬁl, —~hz| is obtained through an adaptive
algorithm, as for instance a frequency domain adaptive LMS as pre-
sented in [7]. If L is the length of the impulse responses to estimate,
u is in general initialized in such a way that ha{L/2) = 1 while
the reminder is equal to 0. Tn this way he is foreed to be a sort of
delta impulse, while the position of the peak in f1 adapts according
to the real TDOA (a peak will rise in L/2 when the TDOA is Q).
When the above initialization is adopted, the coherence measure can
be derived as:

AED(d) = hi(L/2 + d) e

Although comparisons between GCC-PHAT and AED have been al-
ready conducted in the literature [8], they are limited to TDOA esti-
mation capabilities and to simulated data collections. In particular,
it is worth noting that in [5, 8] AED turned out to be superior with
respect to GCC-PHAT under reverberant and noisy conditions. In
our case, instead, we focus on the final localization results and real
data and compare GCC-PHAT and AED in combination with acous-
tic maps, which are introduced in the next section. '

3. ACOUSTIC MAPS

When several microphone pairs are available, as for instance in the
cases of a distributed microphone network or a linear microphone
array, the source position can be estimated as the point in space that
best fits a set of TDOA measurements. A very efficient solution is of~
fered by acoustic maps which are functions, defined over a sampled
version of the space of potential solutions, representing the plausi-
bility that a source is present at a given pomt. Once a representation
of the acoustic activity distzibution in an enclosure is available in the
form of an acoustic map, the position of the source can be derived as
the point that maximizes suck a map.

Global Coherence Field (GCF) [9], also known as SRP-PHAT,
is a very efficient and powerful toel to compute acoustic maps. If
we assume that A microphone pairs are available and we can com-
pute a coherence measure C; (-) at each microphone pair « for every
physicafly valid time delay, GCF is defined as follows:

A1
> iiTip) )

i=0

4
ia

where T; (p) denotes the theoretical time lag at microphone pair ¢
when the source is in p (the lag can be approximated by the clos~
est integer delay). GCF proved to be very efficient in a distributed
microphone retwork scenario [10],

Later on, the newly introduced Oriented Global Coherence Field
(OGCF) [11] was shown to be able to provide more accurate and
reliable estimates of the source position [12]. OGCF estimates also
the orientation of the source through a proper weighting of single
Ci(-). This information is then exploited to improve the position
estimation accuracy. Unfortunately, in a compact array scenario, as
the one taken into account in this paper, the localization capabilities
of OGCF can not be fully exploited due to lack of angular coverage
provided by the sensor setup. -

A third interesting method for acoustic map computation imple-
ments a suboptimal Least Squares (LS} search method, In this case
the plausibility function is computed as follows [13]

M —1

LSG)= -7 Y [1.0) - n? Q
i=0

where 7; is the time delay that maximizes C;(-) and corresponds to
the TDOA estimation. The minus in equation 6 is introduced to fit
the acoustic map definition which requires high scores for points
with high plausibility. This method is referved to as suboptimal
becaunse it minimizes the LS criterion on a sampled version of the
space of source coordinates. From a theoretical point of view LS is
weaker than GCF and OGCF since it maintains only the informa-
tion about the maximum peak at each single microphone pair, while
GCF and OGCF use all the information in C; (-). Anyway it offersa
lighter solution from a computational and memeory point of view and
in some applications it may turn out to be sufficiently accurate. In
particular such a solution is very suitable for a compact array setup
where users are supposed to be frontal. Conversely, LS is expected
to perform worse than GCF and OGCF in a distributed microphone
network scenario, with microphones all around the walls of a room.
Finally, LS can operate on a continuous domain of time lags since
TDOA estimates can be refined, for instance through parabolic in-
terpolation, and there is no need for rounding T; {p). In a GCF or
OGCF approach, instead, interpolation of the whole Ci(-) is very
computationally demanding and not reasonable in real time applica-
tions.

4. EXPERIMENTAL SETUP AND RESULTS

The experimental sefup, that is outlined in Figure 1, resembles the
application scenario envisioned in the DICIT project: up fo four per-
sons are in a room and contrel an interactive television.

The entire sensor setup includes 13 microphones arranged in a
harmonic fashion (with an overall distance between the first and {he
last one of 192 c¢m) plus two microphones placed 20 cm above the
two extremities in order to derive clues for 3D speaker localization.
In the following experiments we exploit only a subset composed of
7 sensors with a uniform distance of 32 cm (see Figure 2). The
sampling rate is 48kHz and the reverberation tiime is about 0.65 s.

The comparative analysis was conducted on chunks of a WOZ
darabase which was collected for evaluation and deveiopment of
speech nrocessing technologies under the DICIT project, In our ex-
periments we focused on the very beginning of each session when
each speaicer is asked to read some vhoneficaily rich sentences while
sitting in the positions depicted in Figure 1. Although the data set
includes a large amount of signals where users interact freely with
the system and move in the room, we restricted our analysis to the
first phase mainly to ensurc a sufficieni reliability of the ground
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Fig. 1. Layout of the experimental setup. 4 positions were investi-
gated at 2.1 m distance from a linear microphone array.
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Fig. 2. Configuration of the harmonic linear array. The circled sen-
sors form a uniform array of 7 elements. ‘

truth reference coordinates. As a matier of fact, spatial labeling,
obtained through automatic video tracking, and manual segmenta-
tion are prone to errors which may affect the algorithim comparison.
Hence we limited the analysis to more controlted conditions where
references are easier to extract and control. Recorded signals include
a background of real environmental noise, resulting in an average
SNR of 30dB. Three additional SNR levels were then produced by
addition of white gaussian noise, which provided average SNRs of
17dB, 7dB and 2dB.

Overall, six different localization algorithms are evaluated,
which are obtained by combining two coherence measure ap-
proaches, i.e. GCC-PHAT and AED, and three acoustic map com-
putation methods, namely GCF, OGCF and LS. We refer to thein as:
GCF-GCC, OGCF-GCC, L8-GCC, GCF-AED, OGCF-AED and
LS-AED, For each of them, acoustic maps are computed on a two
dimensional space sampled with 5 em resolution,

Algorithms are evaluated in terms of euclidean distance be-
tween reference positions and localization outputs. Due to different
fime resolutions beiween algorithms and references, sach localiza-
tion output is associated to a proper refetence as described in [10].
Time resolution of the reference positions, which determines the
evaluation time resolution, is 0.2 5. A localization error is labeled
either as gross, when it ig larger than 0.5 m, or as fine otherwise,
With “Localization Rate” (Pcor) we measure the reliability of an
aigorithin as the percentage of fine errors over all the localization es-
timates. Locaiization accuracy is measured in terms of “Roct Mean
Square Error” (RMSE) of all the iocalizavion errors (fine and gross),
Figare 3 shows performance in terms of Peor for each algorithm
when different SNR levels are applied. SNR equal to 30dB refors
to the ciean case where no whiie noise is added and signals are
only corrupted by the environmental noise. Notice bow there is no
significant difference between the six algorithms in the 30dR case
while GCC-PHAT performs better than AED as soon as the SNR
is lower than about 13¢R. Tt is worth noting also how LS is aiways

poorer than GCF and OGCF in noisy conditions, independenily
of the coherence measure it is combined with. The explanation is
related to the fact that in noisy conditions some 7: are wrong and
directly affect localization performance, while GCF and OGCF can
rely also on the information of secondary peaks which is maintained
in C; {+). GCF and OGCF give very similar performance, as it was -
expected in a compact array scenario, since OGCF potential is only
partially utilized,

Poar (%)

i ;
GeFaec - [ -

...DECFGCC
LS-GCC -
GCF-AED - -
sl < DGCF-AED e |
: S S 2
a H 10 15 20 25 30

SNR {dB}

Fig. 3. Localization performance in terms of Pcor for each of the
algorithms under investigation when different SNR are applied.

The above analysis is partly confirmed by Figure 4, which re-
ports experimental results in terms of RMSE. Tt can be observed,
however, that under clean conditions AED offers more accurate es-
timations than GCC-PHAT. This behaviour can be explained with
the adaptive nature of AED which takes advantage from the given
scenario where sources do not move. As a matter of faci, speech
signals are characterized by short pauses, hesitations and portions of
signals with enzrgy concentrated in the lower part of the spectrum,
which negatively influence the coherence measure evidence. For in-
stance, it has been shown that GCC-FHAT is more reliable when a
speaker pronounces a fricative than during a vowel, The adaptive
nature of AED, that intrinsically integrates information over time,
allows a better bridging of low-coherence segments, which results in
an improved overall accuracy.
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Fig. 4. Localization perforiance in terms of RMSE for cach of the
algorithms under ipvestigation when different SNR ave appliad.

In an effort to verify this interpretation, we consider a post-
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processing on localization estimates based on thresholding of the
acoustic map maximumn peak. Those estimations which are derived
from a low peak, ie. from not very reliable acoustic maps, are
skipped. In order to quantify the consistency of skipped estimates,
we introduce a new metric, named “Deletion Rate” (Del), that mea-
sure the percentage of speech instants for which an estimation is not
available. Post-processing is applied only te the clean case and dif-
ferent thresholds are used, resulting in different Deletion Rates. Fig-
ure 5 shows the localization perfotmance of four algorithes in terms
of RMSE coresponding to different values of Del. It can be ob-
served how performance of GCC-PHAT equals that of AED already
when only few localization estimates are discarded (Del < 5%). It
is also worth noting how LS performs slightly better than GCF in the
clean case because it can operate without the need of sampling the
TDOA domain.
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Fig. 5. Localization performance in terms of RMSE whien a thresh-
olding is applied on localization ouiputs. The figure takes into ac-
count GCF-GCC, LS-GCC, GCF-AED and LS-AED in the 30dB
SNR case.

5. CONCLUSIONS.
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